Remove Li-ion Remove Recharge Remove Sodium Remove Water
article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

The circulating seawater in the open-cathode system results in a continuous supply of sodium ions, endowing the system with superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. an alloying material), in full sodium-ion configuration.

Recharge 285
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. A typical Li-air battery discharges at 2.5-2.7

Sodium 218
article thumbnail

Researchers demonstrate concept desalination battery

Green Car Congress

Schematic representation of the working principle behind a complete cycle of the desalination battery, showing how energy extraction can be accomplished: step 1, desalination; step 2, removal of the desalinated water and inlet of seawater; step 3, discharge of Na + and Cl ? in seawater; step 4, exchange to new seawater. Click to enlarge.

Concept 246
article thumbnail

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Schematic representation and operating principles of the lithium–water electrochemical cell used for hydrogen generation: (1) external circuit and (2) inside of lithium–water electrochemical cell. the high-school chemistry demonstration of the violent reaction between sodium and water.). sea water) by using sunlight.

Water 186
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

Can Flow Batteries Finally Beat Lithium?

Cars That Think

The battery in her EV is a variation on the flow battery , a design in which spent electrolyte is replaced rather than recharged. The cell of a flow battery uses two chemical solutions containing ions, one acting as the anolyte (adjacent to the anode), the other as the catholyte (near the cathode).

article thumbnail

CalSEED awards $4.2M to early-stage clean energy innovations

Green Car Congress

rechargeable battery?technology?that MIplus Solar Inc is developing a single device architecture for the seamless and simultaneous generation and storage of energy, via a solar cell and an alkali metal-ion battery, that are integrated together. Innovasion Labs PINC, Inc. is developing a?rechargeable technology?that

Clean 371