Remove Comparison Remove Ni-Li Remove Recharge
article thumbnail

Hanyang/BMW team develops high-energy density Li-ion battery with carbon-nanotube-Si composite anode and NCM concentration gradient cathode

Green Car Congress

Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. g cm -3 ; a two-sloped full concentration gradient (TSFCG) Li[Ni 0.85 O 2 , Li[Ni 0.85 O 2 (NCM) and Li[Ni 0.8

Li-ion 210
article thumbnail

AIST Develops New Cobalt-free, Mixed Oxide Cathode Material with Iron for Li-ion Batteries; Lower Cost with Good Performance

Green Car Congress

have developed two cobalt-free mixed metal oxide cathode materials for Li-ion batteries containing 20% iron: Li 1+x (Fe 0.2 Mn 0.4 ) 1-x O 2 and Li 1+x (Fe 0.2 By comparison, an NMC material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) offers an initial charge-discharge capacity of 220 mAh g -1 and an average initial discharge voltage of 4V.

Li-ion 186
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Schematic illustration of the aqueous Li-I 2 battery.

Li-ion 255
article thumbnail

Penn State team devises solution for fast charging of Li-ion batteries at cold temperatures

Green Car Congress

Fast charging is seen as a solution for range and recharging time issues for EVs. Now, a team from Penn State has devised an approach that enables 15-min fast charging of Li-ion batteries in any temperatures (even at ? at 0 °C to prevent lithium plating, which explains the long recharge time of today’s EVs at low temperatures.

Li-ion 210
article thumbnail

Argonne and Hanyang University Develop New High-Energy Cathode Material With Improved Thermal Stability; Good Fit for PHEV Applications

Green Car Congress

SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. In this material (Li[Ni 0.64 Comparison of cycling performance of half cell based on bulk Li[Ni 0.64 and concentration-gradient material Li[Ni 0.64 From Sun et al. Click to enlarge.

Ni-Li 170
article thumbnail

New prelithiation technique for silicon monoxide anodes for high-performance batteries; compatible with current roll-to-roll manufacturing

Green Car Congress

Researchers from the Korea Advanced Institute of Science and Technology (KAIST), with colleagues from the Korea Institute of Energy Research (KIER), Qatar University and major battery manufacturer LG Chem have developed a technique for the delicately controlled prelithiation of SiO x anodes for high-performance Li-ion batteries. 5b03776XX.

Ni-Li 150
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

batteries using the same process of ion insertion and removal as in Li-ion batteries—have been discussed in the literature for some time. For cathode materials, the reversible, stable capacity of bulk Na + intercalation is usually limited to levels far below what can be obtained in Li-ion electrode materials. Earlier post.)

Sodium 150