Remove Battery Remove Grid Remove Polymer Remove Sodium
article thumbnail

New liquid alloy electrode significantly lowers operating temperature of sodium-beta batteries; improved performance

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.

Sodium 218
article thumbnail

EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think!

Plug In India

By Kamlesh & Raphae Every major automaker has announced plans to build Lithium-Ion battery gigafactories. The aim is to build batteries at a large scale to reduce prices. Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! Multiple auto makers are seeking a secure supply chain for battery materials.

Sodium 59
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

U-M leads new DOE-funded research center for ceramic ion conductors; MUSIC

Green Car Congress

million research center, led by Michigan Engineering and funded by the US Department of Energy, will focus on understanding an emerging branch of science involving mechanical and chemical phenomena that affect advanced battery designs. —Jeff Sakamoto, professor of mechanical engineering at U-M and director of the new center.

article thumbnail

Carnegie Mellon researchers develop semi-liquid lithium metal anode for use with solid electrolytes

Green Car Congress

Researchers from Carnegie Mellon University’s Mellon College of Science and College of Engineering have developed a semiliquid lithium metal-based anode (SLMA) that represents a new paradigm in battery design for solid electrolyte batteries. The interdisciplinary research team published their findings in the current issue of Joule.

Polymer 255
article thumbnail

DOE Awarding $620M for Smart Grid Demonstration and Energy Storage Projects

Green Car Congress

The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems.

article thumbnail

OSU smart membrane could enable new category of high-energy, high-power energy storage for EVs

Green Car Congress

A team at the Ohio State University has developed a membrane that regulates bi-directional ion transport across it as a function of its redox state and that could be used as a programmable smart membrane separator in future supercapacitors and redox flow batteries. plugin EVs to Tesla’s 85 kWh battery pack). Click to enlarge.