Remove Battery Powered Remove Lithium Ion Remove Low Cost Remove Sodium
article thumbnail

Faradion and Phillips 66 to develop lower cost and higher-performing sodium-ion battery materials

Green Car Congress

UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).

Sodium 269
article thumbnail

BYD breaks ground on its first sodium-ion EV battery plant

Baua Electric

The world’s largest EV maker, BYD , broke ground on its first sodium-ion battery plant this week. However, BYD is also a top global battery manufacturer. BYD’s Blade Battery powers other automakers’ EVs, including Tesla, Hyundai, Toyota, and Ford, to name a few. BYD is investing $1.4

Sodium 52
article thumbnail

Seaweed-Based Battery Powers Confidence in Sustainable Energy Storage

CleanTechnica EVs

Bristol-led team uses nanomaterials made from seaweed to create a strong battery separator, paving the way for greener and more efficient energy storage. Sodium-metal batteries (SMBs) are one of the most promising high-energy and low-cost energy storage systems for the next-generation of large-scale applications.

article thumbnail

New nanoparticle copper compound cathode could enable low-cost, long-life and high-power potassium-ion batteries for grid storage

Green Car Congress

Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Potassium will just zoom in and zoom out, so you can have an extremely high-power battery. Cost is a greater concern. —Yi Cui.

Low Cost 304
article thumbnail

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

Green Car Congress

The study, which provides a joint industry analysis of how different types of batteries are used in different automotive applications, concludes that lead-based batteries will by necessity remain the most wide-spread energy storage system in automotive applications for the foreseeable future.

Lead Acid 304
article thumbnail

PNNL team develops sodium-manganese oxide electrodes for sodium-ion rechargeable batteries

Green Car Congress

low-cost Na-ion battery system for upcoming power and energy. low-cost Na-ion battery system for upcoming power and energy. Lithium-ion rechargeable batteries perform well, but are too expensive for widespread use on the grid. Earlier post.) Earlier post.)

Sodium 218
article thumbnail

PNNL study outlines requirements for grid storage, reviews four electrochemical energy storage systems: vanadium redox flow, Na-beta, Li-ion and lead-carbon

Green Car Congress

published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. Single-cell and tubular design of a Na-beta battery.

Li-ion 231