Remove Li-ion Remove Range Remove Sodium Remove Store
article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Researchers are working on ways to store more energy in the cathode materials by increasing nickel content. —Bi et al.

Li-ion 418
article thumbnail

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

Green Car Congress

The nanocrystals possess high and similar Li-ion and Na-ion charge storage capacities of 580?640 85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage. V potential range.

Li-ion 220
article thumbnail

U Alberta team develops hybrid sodium-ion capacitor; intermediate in energy & power between ultracaps and batteries

Green Car Congress

A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. V (tested at 0.1

Sodium 278
article thumbnail

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance.

Ni-Li 302
article thumbnail

GE testing sodium halide battery/Li-ion battery/fuel cell hybrid system for transit bus

Green Car Congress

GE’s ecomagination.com publication reports that GE engineers have begun testing a transit bus equipped with a new hybrid energy system integrating GE’s Durathon sodium-halide battery ( earlier post ), a lithium-ion battery and a hydrogen fuel cell.

Sodium 225
article thumbnail

Researchers call for integration of materials sustainability into battery research; the need for in situ monitoring

Green Car Congress

Although estimates vary widely, the predicted penetration of lithium-ion technology into these large-volume markets could result in as much as a threefold increase of production for the cathode material, reaching nearly 400,000 tonnes per year by 2020. Note the trend in abundances of Al > Ca > Mg > Na > Li, and Fe > Mn > Ni > Co.

Li-ion 150
article thumbnail

Aqua Metals is building a more sustainable battery recycling ecosystem

Charged EVs

The economic benefits of recycling Li-ion batteries are clear, but at present, only a small percentage of them are recycled. The two main processes for recycling lithium-ion batteries are pyrometallurgy and hydrometallurgy. There are currently two main processes for recycling lithium-ion batteries.