Remove Li-ion Remove Maryland Remove Recharge Remove Universal
article thumbnail

ARPA-E awards $42M to 12 projects for advanced EV batteries; EVs4ALL program

Green Car Congress

ARPA-E selected the following 12 teams from universities, national laboratories and the private sector to address and remove key technology barriers to EV adoption by developing next-generation battery technologies: 24M Technologies will develop low-cost and fast-charging sodium metal batteries with good low-temperature performance for EVs.

Li-ion 256
article thumbnail

NASA selects proposals for advanced energy storage systems for future space missions: silicon-anode Li-ion and Li-S

Green Car Congress

NASA has selected four proposals for advanced Li-ion and Li-sulfur energy storage technologies that may be used to power the agencys future space missions. High Energy Density and Long-Life Li-S Batteries for Aerospace Applications, submitted by the California Institute of Technology in Pasadena.

Li-ion 261
article thumbnail

UMD researchers report solution to high interfacial impedance hampering developing of high-performance solid-state Li-ion batteries

Green Car Congress

Garnet-type solid-state electrolytes (SSEs) for Li-ion batteries offer a range of attractive benefits, including high ionic conductivity (approaching 1 mS cm −1 at room temperature); excellent environmental stability with processing flexibility; and a wide electrochemical stability window. With the garnet composition Li 7 La 2.75

Li-ion 150
article thumbnail

U Maryland team devises new method to stabilize high-capacity Si anodes for Li-ion batteries: interfacial oxygen

Green Car Congress

Researchers at the University of Maryland have improved the cycle life of silicon/carbon matrix-composite electrodes by 300%, even at mass loadings, solely by the chemical tailoring of the interface between the silicon and the carbon with atomic oxygen. 10 times that of graphite anodes used in lithium ion batteries.

Maryland 255
article thumbnail

Researchers develop non-flammable fluorinated electrolyte for Li-metal anodes with aggressive cathode chemistries; toward a 500 Wh/kg goal

Green Car Congress

Researchers at the University of Maryland (UMD), the US Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have developed a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. O 2 cathode (~99.93%). O 2 cathode (~99.93%). At a loading of 2.0

Ni-Li 186
article thumbnail

JCESR team identifies new mechanism hampering Mg-ion batteries; unforeseen reactivity

Green Car Congress

Rechargeable magnesium batteries are of great interest as potential “beyond Li-ion” systems for extended electric vehicle range. Because magnesium is divalent, it can displace double the charge per ion (i.e., Mg 2+ rather than Li + ). As an element, magnesium is more abundant than lithium, and more stable.

Batteries 170