Remove Conversion Remove Recharge Remove Sodium Remove Store
article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

Researchers from Ulsan National Institute of Science and Technology (UNIST) in Korea and Karlsruher Institute of Technology in Germany have developed a novel energy conversion and storage system using seawater as a cathode. Similarly, sodium has recently attracted attention as a replacement for lithium in alkali-metal-air batteries.

Recharge 285
article thumbnail

Researches developed EV batteries that store 6 times more charge than common onesĀ 

Electric Vehicles India

Researches developed EV batteries that store 6 times more charge than common ones . An international team of researchers led by Stanford University has developed rechargeable batteries that store the charge up to 6 times more than the normal currently available commercial ones.

Store 69
article thumbnail

Sigma-Aldrich and Ilika Technologies collaborate to scale-up and commercialize boron hydride hydrogen-storage materials

Green Car Congress

To be economically viable, the target weight percentage of hydrogen stored in such a material has been set at 6% by the US Department of Energy. weight% of hydrogen; the hydride materials being verified and scaled-up by Aldrich Materials Science can potentially store up to 10 weight% of hydrogen, reversibly, the company says.

Hydrogen 199
article thumbnail

CO2-neutral hydrogen storage with a bicarbonate/formate system

Green Car Congress

Metal hydride tanks store hydrogen in a relatively manageable volume but are very heavy and expensive, as well as operating only at high temperatures or far too slowly. The nontoxic aqueous solution of formate is easily stored and transported. to sodium formate in 96% yield at 70 °C in water/THF without additional CO 2.

Hydrogen 210
article thumbnail

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Although direct chemical reactions between water and certain metalsā€”alkali metals including lithium, sodium and othersā€”can produce a large amount of hydrogen in a short time, these reactions are too intense to be controlled. the high-school chemistry demonstration of the violent reaction between sodium and water.).

Water 186
article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

CEES has three main research thrusts: the development of advanced lithium-ion and multivalent ion batteries; the development of rechargeable metal-air batteries; and Development of reversible low and elevated temperature fuel cells. Rechargeable metal-air batteries. Advanced Li-ion and multivalent ion batteries. earlier post ).

MIT 150