Remove Commercial Remove Ni-Li Remove Recharge Remove Resource
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

MIT researchers and colleagues at two national laboratories have developed a sulfonamide-based electrolyte that enables stable cycling of a commercial LiNi 0.8 A limited cyclable Li inventory can be easily depleted by side reactions or become kinetically unreachable due to electronic/ionic isolation. —Jeremiah Johnson.

Ni-Li 284
article thumbnail

Researchers in China develop high-voltage-resistant electrolyte for ultrahigh voltage Li metal batteries

Green Car Congress

As reported in an open-access paper in the RSC journal Energy & Environmental Science , Li||LiNi 0.8 Li||NCM811 cells with a thin (50 ? With the increasing demand for rechargeable batteries with a high energy density (? V vs standard hydrogen electrode), is one of the ideal anodes to replace commercial graphite (372 mAh g -1 ).

Ni-Li 170
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33 Up until now, rechargeable zinc-air batteries have been made with expensive precious metal catalysts, such as platinum and iridium oxide.

Zinc Air 150
article thumbnail

AIST researchers synthesize new class of high-voltage, high-capacity cathode materials for Li-ion batteries

Green Car Congress

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57 However, O3-Li 0.7

Li-ion 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Cycling performance of Li/SeS 2 ?C, Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6 However, both Li/S and Li/O 2. systems suffer from cycling performance issues that impede their commercial applications: Li/O 2. C) and metallic Li and Na.

Recharge 220
article thumbnail

New prelithiation technique for silicon monoxide anodes for high-performance batteries; compatible with current roll-to-roll manufacturing

Green Car Congress

Researchers from the Korea Advanced Institute of Science and Technology (KAIST), with colleagues from the Korea Institute of Energy Research (KIER), Qatar University and major battery manufacturer LG Chem have developed a technique for the delicately controlled prelithiation of SiO x anodes for high-performance Li-ion batteries.

Ni-Li 150
article thumbnail

Novel Concentration-Gradient Shell Li-ion Cathode Material Delivers High Capacity and Excellent Cycling Stability

Green Car Congress

(a) SEM image and (b) cross-sectional images of Li[Ni 0.67 A team from Hanyang University (Korea), Iwate University (Japan) and Argonne National Laboratory in the US synthesized a novel Li[Ni 0.67 The discharge capacity of the concentration-gradient Li[Ni 0.67 and Li[(Ni 0.8 The Li[Ni 0.67

Li-ion 199