This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The resulting aqueous bicarbonate solution can be catalytically converted to a formate solution under much milder conditions than those required for reactions of methanol or methane. Bicarbonates are a component of many natural stones and are also commonly used as baking powder or sherbet (sodium bicarbonate, NaHCO 3 ).
Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. times above that of sodium-ion batteries with graphite electrodes.
Scott Elrod, VP and Director of PARC’s Hardware Systems Laboratory (HSL) research organization also directs the Cleantech Innovation Program at PARC, which develops solutions for delivering affordable solar energy, increasing solar cell efficiency, purifying water, managing energy utilization, and producing renewable fuels. Electrodes.
Photosynthetic processes used by plants or algae use sunlight to convert atmospheric CO 2 to energy-rich metabolites (carbohydrates, lipids, or hydrocarbons) which can be processed into transportation fuels. Solar photovoltaic (PV) devices harvest and convert sunlight directly to electricity. Photovoltaic Solar Energy.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content