Remove 2013 Remove Li-ion Remove Sodium Remove Universal
article thumbnail

Researchers convert atmospheric CO2 to carbon nanofibers and nanotubes for use as anodes in Li-ion and Na-ion batteries

Green Car Congress

Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. Earlier post.) —Licht et al.

Li-ion 150
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner.

Sodium 150
article thumbnail

Researchers propose new VO2 cathode material for aluminum-ion rechargeable battery

Green Car Congress

A team from the University of Science and Technology Beijing is proposing a new super-valent battery based on aluminium ion intercalation and deintercalation. The battery exhibits excellent reversibility and relatively long cycle life compared to earlier Al-ion efforts, the team said. Wang et al. Click to enlarge.

Recharge 240
article thumbnail

Stanford study quantifies energetic costs of grid-scale energy storage over time; current batteries the worst performers; the need to improve cycle life by 3-10x

Green Car Congress

Credit: Barnhart and Benson, 2013. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Lithium-ion batteries were the best performers, with an ESOI value of 10. Click to enlarge. Energy Environ.

article thumbnail

Argonne researchers advancing new class of selenium sulfide composite cathodes that could boost Li-ion energy density 5x

Green Car Congress

Cycle performance of Li cells with (a, b) Se?, (c, New composite materials based on selenium (Se) sulfides used as the cathode in a rechargeable lithium-ion battery could increase Li-ion density five times, according to research carried out at the US Department of Energy’s Advanced Photon Source at Argonne National Laboratory.

Li-ion 225
article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. Advanced Li-ion and multivalent ion batteries. Rechargeable metal-air batteries.

MIT 150
article thumbnail

Univ. of Maryland team develops tin-film on wood fiber anode for Na-ion batteries; targeting grid storage

Green Car Congress

A team at the University of Maryland has demonstrated that a material consisting of a thin tin (Sn) film deposited on a hierarchical conductive wood fiber substrate is an effective anode for a sodium-ion (Na-ion) battery, and addresses some of the limitations of other Na-ion anodes such as capacity fade due to pulverization.

Maryland 199