Remove Low Cost Remove Price Remove Sodium Remove Universal
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Study suggests lithium and cobalt for batteries may face supply risks by 2050

Green Car Congress

The researchers present these results in the journal Nature Reviews Materials as part of a cost and resource analysis of sodium-ion batteries. … According to the researchers, this gives rise to strong concerns about a possible shortage and associated price increase of LIBs in the near future. —Vaalma et al.

Supplies 281
article thumbnail

Researchers propose new VO2 cathode material for aluminum-ion rechargeable battery

Green Car Congress

A team from the University of Science and Technology Beijing is proposing a new super-valent battery based on aluminium ion intercalation and deintercalation. Sodium-ion and magnesium-ion batteries, as new energy storage systems in portable devices, have attracted much attention of the investigators. Wang et al. Click to enlarge.

Recharge 240
article thumbnail

DOE Awarding $620M for Smart Grid Demonstration and Energy Storage Projects

Green Car Congress

(DOE funding $75,161,246, total project value with cost share $150,322,492). In partnership with a consortium of local research institutions, this project deploy smart grid systems at partners’ university campus properties and technology transfer laboratories. Demonstration of Sodium Ion Battery for Grid Level Applications.

article thumbnail

Univ. of Maryland team develops promising sodium-ion cathode material: FePO4/nanotube composite

Green Car Congress

Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries.

Sodium 231