article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Feedstocks will include Li/Ni/Ca/Mg-rich igneous and sedimentary minerals.

Supplies 345
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6

Recharge 220
article thumbnail

Researchers call for integration of materials sustainability into battery research; the need for in situ monitoring

Green Car Congress

Under such a scenario, the production of Li-ion batteries should expand hugely over the years to come, hence reviving the issue of finite Li reserves. These reserves are indeed limited, but Li can be recycled by hydrometallurgy, although the economics of such a process has yet to be worked out. —Grey and Tarascon.

Li-ion 150
article thumbnail

NETL investigating researching chemistries for large-scale battery- and supercapacitor-based grid energy storage systems

Green Car Congress

This includes research on appropriate anodes, cathodes, and electrolytes for magnesium (Mg)-, sodium (Na)-, and lithium (Li)-based batteries and novel transition metal oxide- and nitride-based supercapacitor electrode materials. Magnesium is much more abundant in the Earth’s crust, making it less expensive than Li by a factor of 24.

article thumbnail

New direct borohydride fuel cell increases peak power density by factor of 1.7–3.7

Green Car Congress

A direct borohydride fuel cell—first demonstrated in the early 1960s—is a type of alkaline fuel cell directly fed by a sodium borohydride or potassium borohydride solution. Xiaodong Yang, Yongning Liu, Sai Li, Xiaozhu Wei, Li Wang & Yuanzhen Chen (2012). DBFCs feature a high open circuit voltage (1.64

Fuel 257