Remove Battery Remove Grid Remove Japan Remove Sodium
article thumbnail

New liquid alloy electrode significantly lowers operating temperature of sodium-beta batteries; improved performance

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.

Sodium 218
article thumbnail

New MIT metal-mesh membrane could solve longstanding problems with liquid metal displacement batteries; inexpensive grid power storage

Green Car Congress

A new metal mesh membrane developed by researchers at MIT could advance the use of the Na–NiCl 2 displacement battery, which has eluded widespread adoption owing to the fragility of the ?"-Al The results could make possible a whole family of inexpensive and durable materials practical for large-scale rechargeable batteries.

MIT 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

Lux: Li-ion dominating grid storage market with 90% of 2014 proposals

Green Car Congress

Lithium-ion (Li-ion) batteries have become the dominant new technology in grid storage, capturing a 90% share of systems proposed last year, according to analysts at Lux Research. Molten salt batteries—consisting almost entirely of sodium-sulfur (NaS)—account for 23% of all deployed MW and 64% of deployed MWh respectively.

Li-ion 150
article thumbnail

Low-cost 5V dual carbon battery development for EV 

Electric Vehicles India

Low-cost 5V dual carbon battery development for EV . A 5V Dual Carbon Battery that uses self-standing carbon fibre mats as both electrodes such as cathode and anode has been developed by the Electrochemical Energy Storage Lab at the Indian Institute of Technology Hyderabad (IITH). A research group led by Surendra K.

article thumbnail

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Scientists from the Energy Technology Research Institute, AIST in Tsukuba, Japan, have developed a lithium-water electrochemical cell for the controlled generation of hydrogen and electricity. the high-school chemistry demonstration of the violent reaction between sodium and water.). Source: Wang et al. Click to enlarge. Haoshen Zhou.

Water 186
article thumbnail

PNNL study outlines requirements for grid storage, reviews four electrochemical energy storage systems: vanadium redox flow, Na-beta, Li-ion and lead-carbon

Green Car Congress

published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. In their study, Yang et al. The need for storage.

Li-ion 231