This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. Sodium (Na) is an earth-abundant and inexpensive element, and shares many properties with lithium.
Schematic representation of the working principle behind a complete cycle of the desalination battery, showing how energy extraction can be accomplished: step 1, desalination; step 2, removal of the desalinated water and inlet of seawater; step 3, discharge of Na + and Cl ? in seawater; step 4, exchange to new seawater. Click to enlarge.
A new metal mesh membrane developed by researchers at MIT could advance the use of the Na–NiCl 2 displacement battery, which has eluded widespread adoption owing to the fragility of the ?"-Al The results could make possible a whole family of inexpensive and durable materials practical for large-scale rechargeable batteries.
Based in Joplin, MO, EaglePicher is a designer and manufacturer of batteries, battery management systems and energetic devices for the defense, aerospace and medical industries. million to develop a new generation of high energy, low cost planar liquid sodium beta batteries for grid scale electrical powerstorage applications.
In the second group, an additional 16 awards for a total of $185 million will help fund utility-scale energy storage projects that will enhance the reliability and efficiency of the grid, while reducing the need for new electricity plants. Tehachapi Wind Energy Storage Project. 24,978,264. 53,510,209.
ENERGY STORAGE. Planar Na-beta Batteries for Renewable Integration and Grid Applications. Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, low cost planar liquid sodium beta batteries for grid scale electrical powerstorage applications.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content