Remove Energy Storage Remove MIT Remove Sodium Remove Universal
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. Chiang, MIT colleague W. Advanced Li-ion and multivalent ion batteries.

MIT 150
article thumbnail

Sadoway and MIT team demonstrate calcium-metal-based liquid metal battery

Green Car Congress

MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energy storage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts.