Remove Energy Storage Remove Insight Remove Recharge Remove Sodium
article thumbnail

PNNL team develops electrolyte for high-voltage sodium-ion battery with extended longevity

Green Car Congress

Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. A paper on the work appears in Nature Energy. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems.

Sodium 334
article thumbnail

How do sodium-ion batteries charge within seconds – ET Auto

Baua Electric

Sodium-ion batteries have been of considerable interest due to sodium’s abundance compared to lithium, which is over 500 times less common. This innovative development could revolutionize the way we use and think about energy storage in the future.

Sodium 52
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. Thus, further research is required to find better sodium host materials.

Sodium 186
article thumbnail

ASU team develops new solution for mitigating Li dendrite growth by tackling plating-induced residual stress

Green Car Congress

Lithium-metal batteries are among the most promising candidates for high-density energy storage technology, but uncontrolled lithium dendrite growth, which results in poor recharging capability and safety hazards, currently is hindering their commercial potential. —Hanqing Jiang. —Hanqing Jiang.

Li-ion 150
article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. Craig Carter, with their associates, published a study in Advanced Energy Materials (Li et al.

MIT 150