article thumbnail

New solid polymer electrolyte outperforms Nafion; novel polymer folding

Green Car Congress

Researchers, led by a team from the University of Pennsylvania, have used a polymer-folding mechanism to develop a new and versatile kind of solid polymer electrolyte (SPE) that currently offers proton conductivity faster than Nafion by a factor of 2, the benchmark for fuel cell membranes. They collaborated with Kenneth B.

Polymer 250
article thumbnail

Cooper Tire and BRDI consortium partners report significant progress on grant to develop guayule polymer for tires

Green Car Congress

the public-private consortium behind the Biomass Research and Development Initiative (BRDI) grant, “Securing the Future of Natural Rubber—an American Tire and Bioenergy Platform from Guayule,” reported several key advancements emerging from the group’s work over the past year. At its recent annual meeting in Albany, Calif., Earlier post.).

Polymer 150
article thumbnail

Stanford engineers develop catalyst strategy to improve turnover frequencies for CO2 conversion to hydrocarbons by orders of magnitude

Green Car Congress

Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. The research team encapsulated a supported Ru/TiO 2 catalyst within the polymer layers of an imine-based porous organic polymer that controls its selectivity.

article thumbnail

New photocatalytic system converts carbon dioxide to valuable fuel more efficiently than natural photosynthesis

Green Car Congress

A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. Photo credit: (left) Professor Ye Ruquan’s research group / City University of Hong Kong and (right) Biophysical Journal, 99:67-75, 2010.

Convert 369
article thumbnail

NSF awards $2M to Rice U collaboration to explore direct conversion of CO2 into fuels

Green Car Congress

The NSF grant will address challenges that remain before the renewable strategy can be applied practically on a commercial scale. We include experts in catalysts and electrolyzer design, polymer engineering, density functional theory simulations and carbon dioxide capture. To address these challenges, our project is interdisciplinary.

article thumbnail

EPoSil: electroactive polymers for generating electricity from wave power

Green Car Congress

A German consortium involving four companies and and two universities is developing dielectric elastomers (electroactive polymers) for the conversion of mechanical energy—in this case wave power—into electrical power. This grant is part of the “smart materials for innovative products” program.

Polymer 207
article thumbnail

Heat-conducting polymer cools hot electronic devices at 200 C; potential for automotive applications

Green Car Congress

A team led by researchers from Georgia Tech have used an electropolymerization process to produce aligned arrays of polymer nanofibers that function as a thermal interface material able to conduct heat 20 times better than the original polymer. Virendra Singh, a research scientist in the George W. —Baratunde Cola.

Polymer 230