article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels. —Jun Lou.

Low Cost 243
article thumbnail

New solid polymer electrolyte outperforms Nafion; novel polymer folding

Green Car Congress

Researchers, led by a team from the University of Pennsylvania, have used a polymer-folding mechanism to develop a new and versatile kind of solid polymer electrolyte (SPE) that currently offers proton conductivity faster than Nafion by a factor of 2, the benchmark for fuel cell membranes.

Polymer 250
article thumbnail

Researchers show coordination polymer glass membranes can produce as much energy as liquid-based counterparts in fuel cells

Green Car Congress

Scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) have developed a new coordination polymer glass membrane for hydrogen fuel cells that works just as well as its liquid counterparts with added strength and flexibility. Adding zinc to this liquid led to the formation of a solid, elastic polymer glass.

Polymer 332
article thumbnail

A New Energy-Efficient Hydrogel Pulls Water From Air

Cars That Think

Using a new kind of hydrogel material, researchers at the University of Texas at Austin have pulled water out of thin air at temperatures low enough to be achieved with sunlight. Atmospheric water harvesting draws water from humidity in the air. The material is a hydrogel, a polymer network that naturally retains a lot of water.

Water 131
article thumbnail

Directly-cooled lighter-weight EV motor made with polymer housing

Green Car Congress

Researchers at the Fraunhofer Institute for Chemical Technology ICT are working together with the Karlsruhe Institute of Technology KIT to develop a new cooling concept that will enable polymers to be used as EV electric motor housing materials, thereby reducing the weight of the motor and thus, the EV itself. —Robert Maertens.

Polymer 322
article thumbnail

Argonne-led team develops new low-cost cobalt-based catalyst for PEM electrolysis

Green Car Congress

A multi-institutional team led by the US Department of Energy’s (DOE) Argonne National Laboratory (ANL) has developed a low-cost cobalt-based catalyst for the production of hydrogen in a proton exchange membrane water electrolyzer (PEMWE). Production of green hydrogen at that cost could reshape the nation’s economy.

Low Cost 186
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. This lowers the system cost of what is essentially an electrolysis process. HyperSolar, Inc.

Low Cost 246