Remove Cost Remove Texas Remove Universal Remove Water
article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study.

El Paso 459
article thumbnail

Pitt engineers using membrane distillation to recycle water used in fracking and drilling

Green Car Congress

Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses.

Water 303
article thumbnail

A New Energy-Efficient Hydrogel Pulls Water From Air

Cars That Think

Using a new kind of hydrogel material, researchers at the University of Texas at Austin have pulled water out of thin air at temperatures low enough to be achieved with sunlight. Atmospheric water harvesting draws water from humidity in the air. The UT Austin technique is aimed at the latter.

Water 136
article thumbnail

University of Houston team demonstrates new efficient solar water-splitting catalyst for hydrogen production

Green Car Congress

Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.

Houston 268
article thumbnail

UH team develops fast, cost-efficient method to grow OER catalyst for seawater splitting

Green Car Congress

A team of researchers led by Zhifeng Ren, director of the Texas Center for Superconductivity at the University of Houston, has developed an oxygen-evolving catalyst that takes just minutes to grow at room temperature on commercially available nickel foam. That requires substantial amounts of energy and drives up the cost.

Hydrogen 284
article thumbnail

This Rice University Professor Developed Cancer-Detection Technology

Cars That Think

Richards-Kortum is a professor of bioengineering at Rice University , in Houston, and codirector of the Rice360 Institute for Global Health Technologies , which is developing affordable medical equipment for underresourced hospitals. in 1990, she joined the University of Texas at Austin as a professor of biomedical engineering.

Universal 125
article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. The low cost of porous melamine means that the material could be deployed widely. —Mao et al.

Low Cost 243