Remove Resource Remove Solar Remove Universal Remove Water
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The platform developed by the Brown School of Engineering lab of Rice materials scientist Jun Lou integrates catalytic electrodes and perovskite solar cells that, when triggered by sunlight, produce electricity.

Low Cost 243
article thumbnail

Researchers propose testing standards for particulate photocatalysts in solar fuel production

Green Car Congress

Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.

Solar 418
article thumbnail

Synhelion starts construction of DAWN demo plant to produce solar fuels

Green Car Congress

ETH Zurich spin-off Synhelion has started the construction of DAWN—its own industrial plant to produce synthetic fuels using solar heat. The production process—using only solar heat—was first demonstrated in 2019 in a mini-refinery on the roof of ETH Zurich. Earlier post.)

Solar 435
article thumbnail

Cambridge researchers develop standalone device that makes formic acid from sunlight, CO2 and water

Green Car Congress

Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. Qian Wang et al. Qian Wang et al.

Water 418
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. The scientists coat the fibers with titanium oxide, decorated with palladium nanoparticles. Potter, Daniel J.

Water 371
article thumbnail

Monash study on solar-driven electrolysis for green hydrogen production cautions on life-cycle emissions and EROI

Green Car Congress

Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.

Solar 459
article thumbnail

University of Houston team demonstrates new efficient solar water-splitting catalyst for hydrogen production

Green Car Congress

Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. They report on their work in a paper in the journal Nature Nanotechnology.

Houston 268