Remove Design Remove Polymer Remove Universal Remove Water
article thumbnail

New solid polymer electrolyte outperforms Nafion; novel polymer folding

Green Car Congress

Researchers, led by a team from the University of Pennsylvania, have used a polymer-folding mechanism to develop a new and versatile kind of solid polymer electrolyte (SPE) that currently offers proton conductivity faster than Nafion by a factor of 2, the benchmark for fuel cell membranes.

Polymer 250
article thumbnail

Researchers show coordination polymer glass membranes can produce as much energy as liquid-based counterparts in fuel cells

Green Car Congress

Scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) have developed a new coordination polymer glass membrane for hydrogen fuel cells that works just as well as its liquid counterparts with added strength and flexibility. Credit: Mindy Takamiya/Kyoto University iCeMS. —Ogawa et al.

Polymer 332
article thumbnail

New polymer membrane efficiently removes carbon dioxide from mixed gases; high permeability and selectivity

Green Car Congress

A team of researchers from North Carolina State University, SINTEF in Norway and the Norwegian University of Science and Technology, has developed a polymer membrane technology that removes carbon dioxide from mixed gases with both high permeability and high selectivity. A paper on their work is published in the journal Science.

Polymer 186
article thumbnail

Researchers split water by altering photosynthetic machinery in plants; semi-artificial photosynthesis

Green Car Congress

A new study, led by academics at St John’s College, University of Cambridge, has used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies. Katarzyna P.

Water 210
article thumbnail

Researchers advance concept of “4-D” printing technology using shape memory polymer fibers

Green Car Congress

Researchers at the University of Colorado Boulder and Singapore University of Technology and Design have added a “fourth dimension” to additive manufacturing technology, opening up possibilities for the creation and use of adaptive, composite materials in manufacturing, packaging and biomedical applications. A team led by H.

Polymer 246
article thumbnail

Evonik develops novel anion exchange membrane for electrolytic production of hydrogen; CHANNEL project

Green Car Congress

a low cost, raw materials that do not raise concerns in terms of supply bottlenecks (electrodes that do not include PGMs, stainless steel current collectors), a compact design, the adoption of feeds based on non-corrosive liquids (low concentration alkali or DI water), and differential pressure operation.

Hydrogen 433
article thumbnail

Heat-conducting polymer cools hot electronic devices at 200 C; potential for automotive applications

Green Car Congress

A team led by researchers from Georgia Tech have used an electropolymerization process to produce aligned arrays of polymer nanofibers that function as a thermal interface material able to conduct heat 20 times better than the original polymer. This material could ultimately allow us to design electronic systems in different ways.

Polymer 230