article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.

Hydrogen 475
article thumbnail

Sparc Hydrogen to test photocatalytic water splitting (PWS) reactor at CSIRO

Green Car Congress

The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The key aims of this work are to advance the technology readiness level (TRL) of Sparc Hydrogen’s PWS reactor and provide valuable data and information for the subsequent piloting phase.

Water 396
article thumbnail

Schlumberger to integrate Gradient water technology in direct lithium extraction process

Green Car Congress

Schlumberger has entered into a partnership with Gradiant , a global water solutions provider, to introduce a key sustainable technology into the production process for battery-grade lithium compounds. Proper natural resource management is essential in mineral production, and nowhere more so than in lithium.

Water 150
article thumbnail

Pitt engineers using membrane distillation to recycle water used in fracking and drilling

Green Car Congress

Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses.

Water 303
article thumbnail

New stable water-splitting catalyst doesn’t require expensive iridium

Green Car Congress

Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Illustration by Zhen-Yu Wu. 2 , suggesting potential for practical applications.

Water 411
article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.

Water 497
article thumbnail

thyssenkrupp’s water electrolysis technology qualified as primary control reserve in Germany; hydrogen production for the electricity market

Green Car Congress

thyssenkrupp’s proprietary water electrolysis technology for the production of. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen. The technology can also be used in other industries such as cement production. thyssenkrupp and E.ON

Water 337