article thumbnail

Sparc Hydrogen to test photocatalytic water splitting (PWS) reactor at CSIRO

Green Car Congress

The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. Prototype testing of Sparc Hydrogen’s reactor in real world conditions is the culmination of more than 5 years of research and development work conducted by the University of Adelaide and Flinders University.

Water 396
article thumbnail

Novel inexpensive cobalt-nickel electrode for efficient water and urea electrolysis; yolk-shell nanoparticles

Green Car Congress

Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. The material can be used as either an anode or a cathode, and demonstrates high activity and stability in the production of hydrogen and oxygen in the electrolysis of water. Zhang, S.L., and Lou, X.W.

Water 413
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The researchers have published their proof-of-concept in ACS Photonics and will now establish wider studies that demonstrate the scalability of the platform.

Water 371
article thumbnail

A New Energy-Efficient Hydrogel Pulls Water From Air

Cars That Think

Using a new kind of hydrogel material, researchers at the University of Texas at Austin have pulled water out of thin air at temperatures low enough to be achieved with sunlight. Atmospheric water harvesting draws water from humidity in the air. The UT Austin technique is aimed at the latter.

Water 123
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. The concept is broadly similar to an artificial leaf. —Jun Lou.

Low Cost 243
article thumbnail

RMIT researchers develop concept “proton flow battery”

Green Car Congress

RMIT University (Australia) researchers have developed a concept battery based on storing protons produced by splitting water—a reversible fuel cell with integrated solid proton storage electrode. The concept integrates a composite metal hydride–nafion electrode into a reversible proton exchange membrane (PEM) fuel cell.

Concept 291
article thumbnail

Researchers discover new efficient lithium collection method using MOF membranes; Li from produced water

Green Car Congress

Researchers at the University of Texas at Austin, Monash University (Australia) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia have recently discovered a new, efficient way to extract lithium and other metals and minerals from water. million smartphones.

Water 170