Remove Carbon Remove Energy Remove Ni-Li Remove Universal
article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. A paper on their work is published in the RSC journal Energy & Environmental Science.

Li-ion 370
article thumbnail

UMD team uses high concentration of LiFSI salt to suppress dendrite formation on Li-metal anode; paired with Ni-rich cathode

Green Car Congress

of Li deposition and stripping, along with an anodic stability of >5.5 Pairing a Li-metal anode in this electrolyte with and LiNi 0.6 mAh/cm 2 ) created a NMC622||Li cell, which showed a high capacity retention of 86% after 100 cycles at a high cutoff voltage of 4.6 Pairing a Li-metal anode in this electrolyte with and LiNi 0.6

Ni-Li 186
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The US Department of Energy’s (DOE’s) Advanced Research Projects Agency-Energy (ARPA?E) E) will award $39 million in funding to 16 projects across 12 states to develop market-ready technologies that will increase domestic supplies of critical elements required for the clean energy transition. Columbia University.

Supplies 345
article thumbnail

New high-voltage electrolyte additive supports high energy density and stability in LMNC Li-ion battery; 2x energy density over LiCoO2

Green Car Congress

A team led by researchers at Chungnam National University (S. Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2

Li-ion 329
article thumbnail

Sulfur nanodots on nickel foam as high-performance Li-S cathode materials; carbon- and binder-free

Green Car Congress

A team at Nankai University in China has devised high-performance Li-sulfur battery cathode materials consisting of sulfur nanodots (2 nm average) directly electrodeposited on flexible nickel foam; the cathode materials incorporate no carbon or binder. However, the electrochemical inertness of bulk sulfur in the cathode of Li?

Ni-Li 150
article thumbnail

Dahn team develops ethylene-carbonate-free electrolytes for better-performing high-voltage Li-ion cells

Green Car Congress

Conventional electrolytes for Li-ion batteries contain ethylene carbonate (EC) and other additives. However, the cycling performance of Li-ion cells using these carbonate-based electrolytes has been poor at higher voltages (≥4.4 A paper on their work is published the Journal of Power Sources.

Li-ion 150
article thumbnail

Stanford researchers develop new electrolysis system to split seawater into hydrogen and oxygen

Green Car Congress

Hongjie Dai and his research lab at Stanford University have developed a prototype that can generate hydrogen fuel from seawater. Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. The technology could be used for purposes beyond generating energy. Image credit: Courtesy of H.

Hydrogen 249