Remove Carbon Remove Commercial Remove Li-ion Remove Low Cost
article thumbnail

Aqua Metals and 6K Energy partner to develop low-carbon CAM precursors for Li-ion batteries

Green Car Congress

The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.

Li-ion 199
article thumbnail

Team develops high-capacity Li-ion sulfur battery; no Li-metal anode

Green Car Congress

Among the issues hampering the commercialization of this attractive technology are the safety and performance issues associated with the use of the lithium-metal anode. ion battery using an enhanced sulfur–carbon composite cathode that exploits graphene carbon with a 3D array (3DG? based anode (Li y SiO x –C)—i.e.

Li-ion 231
article thumbnail

Group14 closes $18M in financing to scale-up silicon-carbon composite anode material

Green Car Congress

The new funds will be used to scale-up manufacturing of a next-generation silicon-carbon composite anode material and advance into commercial production. Group14 Technologies—a 2016 spin-off from EnerG2—derives its name from the Periodic Table column listing both silicon and carbon (the carbon group).

Financing 243
article thumbnail

ARPA-E awards $42M to 12 projects for advanced EV batteries; EVs4ALL program

Green Car Congress

Projects selected for the Electric Vehicles for American Low-Carbon Living (EVs4ALL) program ( earlier post ) aim to expand domestic EV adoption by developing batteries that last longer, charge faster, perform efficiently in freezing temperatures and have better overall range retention. Award amount: $3,425,000).

Li-ion 256
article thumbnail

New stable Fe3O4/C composite material for conversion electrode in solid-state Li-ion batteries

Green Car Congress

Researchers in Europe, with colleagues from Samsung R&D Institute in Japan, have developed a highly stable Fe 3 O 4 /C composite for use as a conversion electrode in all-solid-state Li-ion batteries. In addition, recently a new chemistry has surfaced, allowing to store more Li + by the so-called conversion mechanism. Resources.

Li-ion 170
article thumbnail

EnerG2 introduces silicon-carbon composite for Li-ion anodes; 5x improvement in cycle life over silicon

Green Car Congress

EnerG2, a company manufacturing advanced nano-structured materials for next-generation energy storage, has introduced a carbon and silicon composite to boost lithium-ion battery capacity and power performance. The composite material has been scaled for commercial manufacturing. Earlier post.).

Li-ion 236
article thumbnail

New high-voltage electrolyte additive supports high energy density and stability in LMNC Li-ion battery; 2x energy density over LiCoO2

Green Car Congress

Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 V with 5 wt% of the fluorinated linear carbonate DFDEC as an additive.

Li-ion 329