article thumbnail

Cornell team develops aluminum-anode batteries with up to 10,000 cycles

Green Car Congress

Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. Now, they have employed a different approach for incorporating aluminum, resulting in rechargeable batteries that offer up to 10,000 error-free cycles.

Batteries 454
article thumbnail

MIT team synthesizes all carbon nanofiber electrodes for high-energy rechargeable Li-air batteries

Green Car Congress

A team at MIT, led by Carl V. The carbon nanofiber electrodes are substantially more porous than other carbon electrodes, and can therefore more efficiently store the solid oxidized lithium (Li 2 O 2 ) that fills the pores as the battery discharges. Source: Mitchell et al. Click to enlarge. ” Resources. Mitchell, Betar M.

MIT 268
article thumbnail

Rechargeable membrane-less hydrogen bromine flow battery shows high power density

Green Car Congress

MIT researchers have engineered a new rechargeable, membrane-less hydrogen bromine laminar flow battery with high power density. In such a device, two liquids are pumped through a channel, undergoing electrochemical reactions between two electrodes to store or release energy. Credit: Braff et al. Click to enlarge.

Recharge 291
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

Contour Energy Systems Licenses MIT Carbon Nanotube Technology for Li-ion Battery Electrodes

Green Car Congress

has acquired a carbon nanotube technology that can significantly improve the power capability of lithium-ion batteries, through an exclusive technology licensing agreement with Massachusetts Institute of Technology (MIT). —MIT Professor Yang Shao-Horn. Paula Hammond, Bayer Chair Professor of Chemical Engineering at MIT.

Li-ion 257
article thumbnail

Researchers devise electrode architectures to prevent dendrite formation in solid-state batteries

Green Car Congress

So far, the current densities that have been achieved in experimental solid-state batteries have been far short of what would be needed for a practical commercial rechargeable battery. The work was supported by the US Department of Energy, the National Science Foundation, and the MIT-Skoltech Next Generation Program. Eschler, C.M.,

Batteries 199
article thumbnail

RPI researchers develop safe, long-cycling Li-metal rechargeable battery electrode; demonstrate Li-carbon battery

Green Car Congress

Researchers at Rensselaer Polytechnic Institute have developed a safe, extended cycling lithium-metal electrode for rechargeable Li-ion batteries by entrapping lithium metal within a porous graphene network (Li-PGN). What is different is that the electrode material that stores the Li is all-carbon for both the anode as well as the cathode.

Recharge 252