Remove Li-ion Remove Lithium Ion Remove Reference Remove Universal
article thumbnail

MIT team develops data-driven safety envelope for lithium-ion batteries for EVs

Green Car Congress

Researchers at MIT, with a colleague from Tsinghua University, have developed a safety envelope for Li-ion batteries in electric vehicles by using a high accuracy finite element model of a pouch cell to produce more than 2,500 simulations and subsequently analyzing the data with Machine Learning (ML) algorithms. —Li et al.

article thumbnail

Ultrathin transition metal silicate nanosheet cathode material for Li-ion batteries supports reversible two-lithium-ion capacity

Green Car Congress

Charge and discharge profile of first and second cycles of Li 2 MnSiO 4 samples measured at 45 °C at 0.02C rate. Researchers from Tohoku University, Japan, have developed novel ultrathin Li 2 MnSiO 4 nanosheets for use as a cathode material in lithium-ion batteries. Credit: ACS, Rangappa et al. Click to enlarge.

Li-ion 230
article thumbnail

Nanjing researchers design new Li-rich layered cathode

Green Car Congress

Researchers at Nanjing University (China) have introduced a new layered C2/m oxide—Li 2 Ni 0.2 Compared with Li 2 MnO 3 (LMO), LNMR displays superior capacity, a more stable capacity retention rate, higher energy density and average discharge voltage. In such materials, 1/3 of the TM sites are occupied by Li phase.

Ni-Li 365
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. Na is comparable to graphite for standard lithium ion batteries. 100 to 150 mA h g ?

Sodium 493
article thumbnail

Researchers in Belgium develop new class of solid composite electrolytes for Li-ion batteries: Eutectogels

Green Car Congress

Researchers at Hasselt University in Belgium are proposing a new class of solid composite electrolytes (SCEs) for Li-ion batteries: deep eutectic solvent (DES)–silica composites. The DES-based gel electrolytes—to which the team refers as eutectogels (ETGs)—are characterized by high ionic conductivity (1.46

Li-ion 218
article thumbnail

New sensor tech for commercial Lithium-ion batteries could support >5x faster charging without compromising safety

Green Car Congress

Researchers at WMG at the University of Warwick (UK) have developed a method to assess the maximum current for commercial 18650 Li-ion batteries, using novel instrumentation methods enabling in operando measurements. Schematics of the FBG sensing element embedded into a Li-ion cylindrical cell. Amietszajew et al.

article thumbnail

thyssenkrupp and partners launch collaborative project EffiForm to lower Li-ion battery cost through improved formation cycling

Green Car Congress

In a 2014 paper exploring prospects for reducing the processing cost of Li-ion batteries, a team from Oak Ridge National Laboratory (ORNL) explained that formation cycling refers to the electrochemical side reactions involved with creating the solid electrolyte interface (SEI) layer. —Wood et al.

Li-ion 150