article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. A lithium-air battery based on lithium oxide (Li 2 O) formation can theoretically deliver an energy density that is comparable to that of gasoline.

Li-ion 418
article thumbnail

Argonne-led team demonstrates Li-air battery based on lithium superoxide; up to 5x Li-ion energy density

Green Car Congress

Lithium-air batteries form lithium peroxide (Li 2 O 2 )—a solid precipitate that clogs the pores of the electrode and degrades cell performance—as part of the charge−discharge reaction process. This remains a core challenge that needs to be overcome for the viable commercialization of Li-air technology.

Li-ion 150
article thumbnail

MIT, Toyota team clarifies role of iodide in Li-air batteries

Green Car Congress

Lithium-air (or lithium-oxygen) batteries potentially could offer three times the gravimetric energy of current Li-ion batteries (3500 Wh/kg at the cell level); as such, they are looked to a potential solution for long-range EVs. One of the main problems related to Li 2 O 2 precipitation is its insulating nature.

MIT 199
article thumbnail

Researchers show feasibility of lithium-metal-free anode for Li-air battery; addressing one of three main barriers to Li-air battery development

Green Car Congress

Voltage profiles (A) and initial cycling behavior (B) of the Li x Si-O 2 -C cell. Although the resulting battery has lower voltage and capacity than a conventional Li-air battery, it offers enhanced safety and an energy density higher than Li-ion batteries. Cycling current: 200 mA g ?1 Credit: ACS, Hassoun et al.

Li-ion 306
article thumbnail

PNNL team uncovers reaction mechanisms of Li-air batteries; how batteries blow bubbles

Green Car Congress

Lithium-air batteries are looked to by many as a very high-energy density next-generation energy storage solution for electric vehicles. One reaction that hasn’t been fully explained is how oxygen blows bubbles inside a lithium-air battery when it discharges. The paper is published in the journal Nature Nanotechnology.

Batteries 150
article thumbnail

China team outlines 5 key areas of future research to realize Li-air batteries

Green Car Congress

In an open access paper published in the International Journal of Smart and Nano Materials , researchers from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences review significant developments and remaining challenges of practical Liair batteries and the current understanding of their chemistry.

Li-ion 285
article thumbnail

AIST team developing Li-air capacitor-battery targeted for EVs

Green Car Congress

A team from Japan’s AIST (National Institute of Advanced Industrial Science and Technology) reports on the development of a “lithiumair capacitor–battery based on a hybrid electrolyte” in a paper in the RSC journal Energy & Environmental Science. Energy Environ. Earlier post.). Earlier post.). —Wang et al.