article thumbnail

Researchers develop highly efficient organometal halide perovskite photoelectrodes for water splitting

Green Car Congress

Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.

Water 369
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels. Zepler Institute, University of Southampton.

Water 371
article thumbnail

Kobe team develops method for highly efficient hydrogen production using sunlight, water and hematite

Green Car Congress

A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.

Water 334
article thumbnail

Japan team reports pathway to green ammonia: photocatalytic conversion of nitrogen with water

Green Car Congress

Researchers in Japan report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photo-irradiated by UV light in pure water with nitrogen—successfully produces ammonia (NH 3 ). Photocatalytic nitrogen reduction is an attractive pathway because it can use light energy, the team pointed out.

Water 170
article thumbnail

Argonne team combines two protein complexes to make hydrogen fuel from water

Green Car Congress

Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. An open-access paper describing their work is published in the journal Chemical Science. —Lisa Utschig, Argonne chemist.

Water 259
article thumbnail

An abundant and inexpensive water-splitting photocatalyst with low toxicity active in visible light

Green Car Congress

Researchers at Japan’s National Institute for Materials Science (NIMS) have discovered a new photocatalyst, Sn 3 O 4 , which facilitates the production of hydrogen fuel from water, using sunlight as an energy source. Sn 3 O 4 has great potential as an abundant, cheap, and environmentally benign solar-energy conversion catalyst.

Water 170
article thumbnail

Kobe team’s hematite mesocrystal photocatalyst simultaneously produces hydrogen and hydrogen peroxide

Green Car Congress

Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Recently, they have succeeded in increasing the light energy conversion efficiency by applying this technology to hematite (?-Fe under 600nm).

Hydrogen 415