article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.

Low Cost 243
article thumbnail

New solid polymer electrolyte outperforms Nafion; novel polymer folding

Green Car Congress

Researchers, led by a team from the University of Pennsylvania, have used a polymer-folding mechanism to develop a new and versatile kind of solid polymer electrolyte (SPE) that currently offers proton conductivity faster than Nafion by a factor of 2, the benchmark for fuel cell membranes. Trigg, then a doctoral student in her lab.

Polymer 250
article thumbnail

ExxonMobil, UC Berkeley, Berkeley Lab develop new MOF for carbon capture and steam regeneration

Green Car Congress

Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).

Carbon 414
article thumbnail

UK awards £28M for 5 demonstration-phase low-carbon hydrogen production projects

Green Car Congress

As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1 Contract value: £2.7

Hydrogen 386
article thumbnail

Polymer-dipped carbon nanotube catalysts equal or outperform platinum catalysts in fuel cells; potential for significant cost reduction

Green Car Congress

Illustration of charge transfer process and oxygen reduction reaction on PDDA-CNT [poly(diallyldimethylammonium chloride)-carbon nanotube]. The team led by Liming Dai, a professor of chemical engineering, is certain they can boost the power output and maintain the other advantages by matching the best nanotube layout and type of polymer.

Polymer 270
article thumbnail

DOE awards Group14 Technologies $3.96M as Energy Storage Grand Challenge winner; nano-silicon within an engineered carbon scaffold

Green Car Congress

Group14 Technologies, a provider of silicon-carbon composite materials for global lithium-ion markets, announced that it has been selected as a winner of the Department Of Energy’s Energy Storage Grand Challenge and will receive a $3.96-million million award.

article thumbnail

Linde and Shell team up to commercialize lower-carbon technology for ethylene: E-ODH

Green Car Congress

The catalytic process is an alternative route to ethane steam cracking, offering the potential of economic advantages, acetic acid co-production and significantly lower overall carbon footprint through electrification of power input.

Carbon 355