Remove Batteries Remove Battery Remove Environment Remove Li-ion
article thumbnail

Lyten introduces next generation Lithium-Sulfur battery for EVs; 3X energy density of Li-ion

Green Car Congress

Lyten , an advanced materials company, introduced its LytCell EV lithium-sulfur (Li-S) battery platform. The technology is optimized for the electric vehicle market and is designed to deliver three times (3X) the gravimetric energy density of conventional lithium-ion batteries. C to as high as 60 ? No conflict minerals.

Li-ion 459
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

the key to addressing the low-temperature capacity loss lies in adjusting the surface electron configurations of the carbon anode to reinforce the coordinate interaction between the solvated Li + and adsorption sites for Li + desolvation and reduce the activation energy of the charge-transfer process.

Li-ion 418
article thumbnail

Direct electro-oxidation method for lithium leaching from spent ternary Li-ion batteries

Green Car Congress

Researchers from Nanchang Hangkong University in China have developed a direct electro-oxidation method for lithium leaching from spent ternary lithium-ion batteries (T-LIBs) (Li 0.8 In a paper in the ACS journal Environmental Science & Technology they report that 95.02% of Li in the spent T-LIBs was leached under 2.5

Li-ion 195
article thumbnail

Researchers move closer to faster-charging Li-ion batteries; real-time tracking of Li ions in LTO

Green Car Congress

A team of scientists led by the US Department of Energy’s (DOE) Brookhaven National Laboratory and Lawrence Berkeley National Laboratory has captured in real time how lithium ions move in lithium titanate (LTO), a fast-charging battery electrode material made of lithium, titanium, and oxygen.

Li-ion 329
article thumbnail

New smelting reduction process to recover Co, Ni, Mn, and Li simultaneously from Li-ion batteries

Green Car Congress

A team from metals research institute SWERIM in Sweden reports on a smelting reduction process to recover cobalt, nickel, manganese and lithium simultaneously from spent Li-ion batteries. The presence of slag may retain some Co, Ni, Mn, and Li in the slag due to the inherent nature of the slag. —Hu et al.

Ni-Li 321
article thumbnail

BASF markets new Licity anode binders for Li-ion batteries

Green Car Congress

BASF has developed a new anode binder series for Li-ion battery manufacturing. Licity binders combine improved battery performance with sustainability features. BASF’s Licity product range for lithium-ion battery binders are suitable for pure graphite as well as silicon-containing anodes.

Li-ion 199
article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. Image by Argonne National Laboratory.)

Li-ion 418