Remove Lithium Ion Remove MIT Remove Recharge Remove Store
article thumbnail

Cornell team develops aluminum-anode batteries with up to 10,000 cycles

Green Car Congress

Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. These materials could also provide a safer and more environmentally friendly alternative to lithium-ion batteries. —Jingxu Zheng.

Batteries 454
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

Contour Energy Systems Licenses MIT Carbon Nanotube Technology for Li-ion Battery Electrodes

Green Car Congress

has acquired a carbon nanotube technology that can significantly improve the power capability of lithium-ion batteries, through an exclusive technology licensing agreement with Massachusetts Institute of Technology (MIT). —MIT Professor Yang Shao-Horn. Contour Energy Systems, Inc. Earlier post.) Earlier post.).

Li-ion 257
article thumbnail

Researchers devise electrode architectures to prevent dendrite formation in solid-state batteries

Green Car Congress

So far, the current densities that have been achieved in experimental solid-state batteries have been far short of what would be needed for a practical commercial rechargeable battery. We think we can translate this approach to really any solid-state lithium-ion battery. Eschler, C.M., Fincher, C.D.

Batteries 199
article thumbnail

Rechargeable membrane-less hydrogen bromine flow battery shows high power density

Green Car Congress

MIT researchers have engineered a new rechargeable, membrane-less hydrogen bromine laminar flow battery with high power density. Laminar flow batteries—which rely on diffusion to separate reactants—eliminate the need for an ion-exchange membrane. Credit: Braff et al. Click to enlarge. —Braff et al.

Recharge 291
article thumbnail

New Lithium rechargeable semi-solid flow cell offers energy densities an order of magnitude greater than previous flow batteries; possible applications in transportation and grid-scale storage

Green Car Congress

Scheme of the semi-solid flow cell (SSFC) system using flowing lithium-ion cathode and anode suspensions. In contrast to previous flow batteries, the SSFC stores energy in suspensions of solid storage compounds to and from which charge transfer is accomplished via dilute yet percolating networks of nanoscale conductors.

Li-ion 345
article thumbnail

RPI researchers develop safe, long-cycling Li-metal rechargeable battery electrode; demonstrate Li-carbon battery

Green Car Congress

Researchers at Rensselaer Polytechnic Institute have developed a safe, extended cycling lithium-metal electrode for rechargeable Li-ion batteries by entrapping lithium metal within a porous graphene network (Li-PGN). They then looked at the interaction of elemental lithium with such defect sites in the graphene.

Recharge 252