article thumbnail

Researchers develop room-temp 1,000+ cycle rechargeable solid-state lithium-air battery

Green Car Congress

Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. Ngo, Paul C. Redfern, Christopher S.

article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. A lithium-air battery based on lithium oxide (Li 2 O) formation can theoretically deliver an energy density that is comparable to that of gasoline.

Li-ion 418
article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Abraham (2010) A Solid-State, Rechargeable, Long Cycle Life LithiumAir Battery. Click to enlarge.

article thumbnail

TU Graz launches Christian Doppler Laboratory for Solid-State Batteries; support from AVL

Green Car Congress

In addition, we want to test alternative charging methods such as pulse charging methods instead of direct current to achieve homogeneous lithium deposition. However, this in turn creates new interfaces, namely between ceramic and polymer, which prevent the transport of ions between the components. —Daniel Rettenwander.

Batteries 259
article thumbnail

Mie University team working on aqueous li-air batteries; 300 Wh/kg

Green Car Congress

Researchers at Mie University in Japan have developed a new protected lithium electrode for aqueous lithium/air rechargeable batteries. Lead researcher Nobuyuki Imanishi said that the system has a practical energy density of more than 300 Wh/kg, about twice that of many commercial lithium-ion batteries.

Universal 236
article thumbnail

BioSolar begins development of high-energy anode technology

Green Car Congress

BioSolar’s cathode technology, which has been the primary focus of its university-led research and development efforts, is a novel conductive polymer material that leverages fast redox-reaction properties rather than conventional lithium-ion intercalation chemistry to enable rapid charge and discharge. Earlier post.).

Energy 150
article thumbnail

NSF to award $13M to projects focused on electrochemical and organic photovoltaic systems

Green Car Congress

Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion electrochemical energy storage are appropriate. Devices of interest include polymer and small molecule organic photovoltaics or dye sensitized photovoltaics for electricity generation.