article thumbnail

Researchers develop room-temp 1,000+ cycle rechargeable solid-state lithium-air battery

Green Car Congress

Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. —Kondori et al. Ngo, Paul C.

article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air. . …

Li-ion 418
article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

A Li-air cell. Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries have both scientific and engineering challenges that need to be addressed. Component(s).

Li-ion 281
article thumbnail

Argonne-led team demonstrates Li-air battery based on lithium superoxide; up to 5x Li-ion energy density

Green Car Congress

Researchers from Argonne National Laboratory, with colleagues in the US and Korea, have demonstrated a lithium-oxygen battery based on lithium superoxide (LiO 2 ). This remains a core challenge that needs to be overcome for the viable commercialization of Li-air technology. —Lu et al. —Khalil Amine.

Li-ion 150
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. If anode materials of lower redox potentials can be stable in aqueous electrolytes, high energy density systems will be feasible.

Li-ion 281
article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Researchers in the UK are developing a rechargeable lithium-air battery that could deliver a ten-fold increase in energy capacity compared to that of currently available lithium-ion cells.

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

During discharge and charge in UHV, Li ions reversibly intercalate/de-intercalate into/from the Li x V 2 O 5 electrode. During discharge, Li ions meet with reduced oxygen on the surface of the Li x V 2 O 5 electrode forming Li 2 O 2 , which is decomposed upon recharge. The rechargeable Li?air