article thumbnail

Georgia Tech team develops melt-infiltration technique for scalable production of solid-state batteries

Green Car Congress

The melt-infiltration technology developed by materials science researchers at the Georgia Institute of Technology uses solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300? —Kostiantyn Turcheniuk, co-author. Turcheniuk, K.,

Georgia 312
article thumbnail

Georgia Tech team develops conversion-type iron-fluoride Li battery cathode with solid polymer electrolyte

Green Car Congress

Researchers at Georgia Tech have developed a promising new conversion-type cathode and electrolyte system that replaces expensive metals and traditional liquid electrolyte with lower cost transition metal fluorides and a solid polymer electrolyte. A paper on their work is published in the journal Nature Materials.

Polymer 230
article thumbnail

Ford and Georgia Tech partner on hydraulic hybrid school bus conversion

Green Car Congress

The Ford Motor Company Fund and the Georgia Institute of Technology are partnering on the US’ first conversion of a traditional school bus to a hydraulic hybrid vehicle that runs on recycled biofuel. Atlanta Public Schools (APS) donated the bus for the project.

Georgia 199
article thumbnail

Georgia Tech team develops highly efficient multi-phase catalyst for SOFCs and other energy storage and conversion systems

Green Car Congress

Researchers at Georgia Tech, with colleagues in China and Saudi Arabia, have developed a rationally designed, multi-phase catalyst that significantly enhances the kinetics of oxygen reduction of the state-of-the-art solid oxide fuel cell cathode. This work demonstrates that a multi-phase catalyst coating (? —Chen et al. 2018.02.008.

article thumbnail

UGA-led team engineers bacterium for the direct conversion of unpretreated biomass to ethanol

Green Car Congress

A team led by Dr. Janet Westpheling at the University of Georgia has engineered the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii , which in the wild efficiently uses un-pretreated biomass—to produce ethanol from biomass without pre-treatment of the feedstock. Whereas wild-type C. —Chung et al.

article thumbnail

Georgia Tech team furthers four-stroke-cycle active-membrane piston reactor for enhanced SMR for H2 production

Green Car Congress

Prior work has established the thermodynamic viability of the CHAMP-SORB concept to achieve 90% fuel conversion at 400 °C and 2:1 steam to carbon ratio, as well as demonstrated the performance enhancements enabled by incorporation of CO 2 and H 2 removal in the absence of transport-limitations using the bench-scale reactor prototype.

Georgia 170
article thumbnail

DOE awards $97M to 33 bioenergy research and development projects

Green Car Congress

These projects will improve the performance and lower the cost and risk of technologies that can be used to produce biofuels, biopower, and bioproducts from biomass and waste resources. Scale-Up of the Primary Conversion Reactor to Generate a Lignin-Derived Cyclohexane Jet Fuel. Microchannel Reactor for Ethanol to n-Butene Conversion.

Waste 186