article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. —Bi et al.

Li-ion 418
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

mol l -1 Li 2 SO 4 aqueous solution as electrolyte. Researchers from Fudan University in China and Technische Universität Chemnitz in Germany have developed an aqueous rechargeable lithium battery (ARLB) using coated Li metal as the anode. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al.

Li-ion 281
article thumbnail

Researchers demonstrate high-capacity Mn-rich Li-ion cathodes; a design pathway away from cobalt and nickel

Green Car Congress

. … it is remarkable that almost all Li-ion cathode materials rely on only two transition metals, Ni and Co, which are the electroactive elements in the layered-rocksalt cathode materials in the Li(Ni,Mn,Co)O 2 chemical space (NMCs). Electrochemical performance of Li 2 Mn 2/3 Nb 1/3 O 2 F. —Lee et al.

Li-ion 257
article thumbnail

New high-voltage electrolyte additive supports high energy density and stability in LMNC Li-ion battery; 2x energy density over LiCoO2

Green Car Congress

Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 (Li 1.2 Mn 0.525 Ni 0.175 Co 0.1

Li-ion 329
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).

Li-ion 199
article thumbnail

Sulfur nanodots on nickel foam as high-performance Li-S cathode materials; carbon- and binder-free

Green Car Congress

A team at Nankai University in China has devised high-performance Li-sulfur battery cathode materials consisting of sulfur nanodots (2 nm average) directly electrodeposited on flexible nickel foam; the cathode materials incorporate no carbon or binder. mg/cm 2 S on the Ni foam exhibited high initial discharge capacity (1458 mAh/g at 0.1

Ni-Li 150
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

This is due to the lack of electrocatalysts that successfully reduce and generate oxygen during the discharging and charging of a battery. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33 In contrast, our method produces a family of new high-performance and low-cost catalysts. —Professor Yuan Chen.

Zinc Air 150