article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

charge cycle, K?O Researchers at Ohio State University (OSU) have demonstrated the concept of a potassium-air (K?O In a paper published in the Journal of the American Chemical Society , they reported a charge/discharge potential gap smaller than 50 mV at a current density of 0.16 The charge overpotential ?

article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. It was subjected to 40 charge–discharge cycles at current densities ranging from 0.05 Electrochem.

article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

DOE awards $60M to 24 R&D projects to accelerate advancements in zero-emissions vehicles

Green Car Congress

Clemson University will develop a lightweight, multi-material passenger vehicle body structure, addressing challenges in joining dissimilar materials. Novel Organosulfur-Based Electrolytes for Safe Operation of High Voltage Lithium-ion Batteries Over a Wide Operating Temperature. SUNY University @ Stony Brook. General Motors.

Li-ion 186
article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

Research team demonstrates Li-air battery capable of long cycle life

Green Car Congress

A team from Hanyang University (Korea) and University of Rome Sapienza (Italy) have demonstrated a lithiumair battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g carbon ?1 1 and 3 A g carbon ?1 1 , respectively. Nature Chemistry doi: 10.1038/nchem.1376 1376 10.1038/nchem.1376.

Li-ion 326
article thumbnail

PNNL team uncovers reaction mechanisms of Li-air batteries; how batteries blow bubbles

Green Car Congress

Lithium-air batteries are looked to by many as a very high-energy density next-generation energy storage solution for electric vehicles. One reaction that hasn’t been fully explained is how oxygen blows bubbles inside a lithium-air battery when it discharges. The paper is published in the journal Nature Nanotechnology.

Batteries 150