Remove Carbon Remove Low Cost Remove Resource Remove Sodium
article thumbnail

Faradion and Phillips 66 to develop lower cost and higher-performing sodium-ion battery materials

Green Car Congress

UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. —Ann Oglesby, Vice President, Energy Research & Innovation at Phillips 66. Earlier post.).

Sodium 269
article thumbnail

RAL proposes new efficient and low-cost process to crack ammonia for hydrogen using sodium amide; transportation applications

Green Car Congress

RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. Hydrogen (H 2 ) is an attractive chemical fuel, with very high gravimetric energy content (120 MJ/kg) and an emissions profile free from carbon dioxide.

Sodium 210
article thumbnail

New hierarchical metal-organic nanocomposite cathode for high-energy sodium-ion batteries

Green Car Congress

Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). 2017) “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries” ChemSusChem doi: 10.1002/cssc.201701484. —Huang et al. and Huang, Y.

Sodium 191
article thumbnail

New Na-ion battery combining intercalation and conversion could be promising low-cost energy storage system

Green Car Congress

Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. Mn 0.25 ]O 2 layered cathode (NFM), and NaClO 4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. For the anode, they selected carbon-modified iron oxide (C-Fe 3 O 4 ) conversion material. Mn 0.25 ]O 2.

Low Cost 230
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 Na is comparable to graphite for standard lithium ion batteries.

Sodium 493
article thumbnail

Researchers use graphite positive electrodes in high-capacity rechargeable lithium/chlorine batteries

Green Car Congress

This work could open up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl 2 batteries. The study is published in the Journal of the American Chemical Society. In an earlier study, the researchers reported ∼3.5 2c07826.

Recharge 243
article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.

Low Cost 150