Remove Lithium Ion Remove MIT Remove Universal Remove Water
article thumbnail

MIT researchers develop optimized sulfidation separation process for rare earth and other key metals

Green Car Congress

New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries by making it easier to separate these rare metals from mining ores and recycled materials. A paper on their work is published in the journal Nature. —Caspar Stinn.

MIT 396
article thumbnail

Tsinghua, MIT, Argonne team discovers lithium titanate hydrates for superfast, stable cycling in Li-ion batteries

Green Car Congress

An international research team from Tsinghua University, MIT and Argonne National Laboratory has discovered a series of novel lithium titanate hydrates that show better electrochemical performances compared to all the Li 2 O–TiO 2 materials reported so far—including those after nanostructuring, doping and/or coating.

article thumbnail

National University of Singapore researchers devise membrane-based supercapacitors; possible new route to high-performance supercapacitive energy storage

Green Car Congress

A team from the National University of Singapore's Nanoscience and Nanotechnology Initiative (NUSNNI), led by principle investigator Dr. Xian Ning Xie, has developed a polystyrene membrane-based supercapacitor that they say will be easier to scale up than the current alternatives. Wh per US dollar for lithium ion batteries.

article thumbnail

MIT/Tsinghua high-rate aluminum yolk-shell nanoparticle anode for Li-ion battery with long cycle life and high capacity

Green Car Congress

A team of researchers at MIT and Tsinghua University has developed a high-rate, high-capacity and long-lived anode for Li-ion batteries comprising a yolk-shell nanocomposite of aluminum core (30 nm in diameter) and TiO 2 shell (~3 nm in thickness), with a tunable interspace (Al@TiO 2 , or ATO). Earlier post.). —Li et al.

Li-ion 150
article thumbnail

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

Green Car Congress

An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V)

Cheap 150
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

Water will be the primary byproduct. A novel metal complex for electrolysis of water will be used to generate the hydrogen at high rates. The aerobic microbe has been engineered at MIT and is capable of converting a variety of organic compounds into oil, from which biodiesel may be produced. NC State University.

Carbon 249
article thumbnail

Pellion Technologies leveraging high throughput computational materials design to make progress on Mg-ion rechargeable batteries

Green Car Congress

Last week’s 4 th Symposium on Energy Storage: Beyond Lithium-ion , hosted by the Pacific Northwest National Laboratory (PNNL), brought together researchers tackling the “Beyond Li-ion” problem by working on a number of different platforms (e.g., Earlier post.). Earlier post.).

Li-ion 210