Remove Commercial Remove Convert Remove MIT Remove Water
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. (B) MS signal and SFE values for a wireless configuration. Reece et al. Click to enlarge.

MIT 278
article thumbnail

MIT researchers advancing development of supercritical water upgrading of heavy crude; lower cost, energy use and CO2

Green Car Congress

Findings by MIT researchers could help advance the commercialization of supercritical water technology for the desulfurization and upgrading of high-sulfur crude oil into high-value, cleaner fuels such as gasoline without using hydrogen—a major change in refining technology that would reduce costs, energy use, and CO 2 emissions.

MIT 150
article thumbnail

MIT Researchers Identify New Low-Cost Water-Splitting Catalyst

Green Car Congress

Daniel Nocera and his associates have found another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. By doing so, he aims to imitate the process of photosynthesis, by which plants harvest sunlight and convert the energy into chemical form.

Low Cost 225
article thumbnail

MIT Energy Initiative announces 2014 seed grant awards

Green Car Congress

The MIT Energy Initiative (MITEI) announced its latest round of seed grants to support early-stage innovative energy projects. Past themes have included topics as diverse as the role of big data and the energy-water nexus. A total of more than $1.6 million was awarded to 11 projects, each lasting up to two years.

MIT 210
article thumbnail

MIT/Tsinghua high-rate aluminum yolk-shell nanoparticle anode for Li-ion battery with long cycle life and high capacity

Green Car Congress

A team of researchers at MIT and Tsinghua University has developed a high-rate, high-capacity and long-lived anode for Li-ion batteries comprising a yolk-shell nanocomposite of aluminum core (30 nm in diameter) and TiO 2 shell (~3 nm in thickness), with a tunable interspace (Al@TiO 2 , or ATO). Earlier post.). —Li et al.

Li-ion 150
article thumbnail

Harvard “bionic leaf 2.0” exceeds efficiency of photosynthesis in nature; hydrogen and liquid fuels

Green Car Congress

Researchers at Harvard have created a hybrid water splitting–biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H 2 and O 2 ) at low driving voltages. It takes sunlight, water and air—and then look at a tree. —Daniel Nocera.

Hydrogen 150
article thumbnail

This Fusion Reactor Is Held Together With Tape

Cars That Think

Gretchen Ertl/CFS/MIT Plasma Science and Fusion Center CFS, a startup spun out of decades of research at the Massachusetts Institute of Technology (MIT), is among the leaders of a new wave of fusion-energy projects that have emerged in the past decade, taking advantage of technological advances as well as a surge in private-sector investment.

Fusion 98