Remove Cheap Remove Conversion Remove Solar Remove Water
article thumbnail

Japan team reports pathway to green ammonia: photocatalytic conversion of nitrogen with water

Green Car Congress

Researchers in Japan report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photo-irradiated by UV light in pure water with nitrogen—successfully produces ammonia (NH 3 ). As a result of this, NH 3 is produced from water and N 2 under ambient conditions by using sunlight as energy source.

Water 170
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

The traces are for solar cells of 7.7% Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. solar-to-fuels systems. illumination.

MIT 278
article thumbnail

An abundant and inexpensive water-splitting photocatalyst with low toxicity active in visible light

Green Car Congress

Researchers at Japan’s National Institute for Materials Science (NIMS) have discovered a new photocatalyst, Sn 3 O 4 , which facilitates the production of hydrogen fuel from water, using sunlight as an energy source. Sn 3 O 4 has great potential as an abundant, cheap, and environmentally benign solar-energy conversion catalyst.

Water 170
article thumbnail

New plasma synthesis process for one-step conversion of CO2 and methane into higher value fuel and chemicals

Green Car Congress

Instead of using H 2 , direct conversion of CO 2 with CH 4 (dry reforming of methane, DRM) to liquid fuels and chemicals (e.g. Moreover, it is a cheap carbon source which can increase the atom utilization of CO 2 hydrogenation due to the stoichiometric ratio of C and O atoms, as well as reducing the formation of water. …

article thumbnail

Lux Research: cost of electrofuels remains far from viable

Green Car Congress

The cost of electrofuels—fuels produced by catalyst-based systems for light capture, water electrolysis, and catalytic conversion of carbon dioxide and hydrogen to liquid fuels—remains far away from viable, according to a new analysis by Lux Research. Biotech Fuels Solar' Source: Lux Research. Click to enlarge.

Cost Of 210
article thumbnail

New Rutgers non-noble metal catalyst for hydrogen evolution performs as well as Pt in both acid and base

Green Car Congress

Currently, renewable hydrogen may be produced from water by electrolysis with either low efficiency alkaline electrolyzers that suffer 50–65% losses, or by more efficient acidic electrolyzers using expensive rare platinum group metal catalysts (Pt). 2 , equivalent to ~10% solar photoelectrical conversion efficiency. 100 mA cm ?2

Hydrogen 150
article thumbnail

Harvard team demonstrates new metal-free organic–inorganic aqueous flow battery; potential breakthrough for low-cost grid-scale storage

Green Car Congress

As the fraction of electricity generation from intermittent renewable sources—such as solar or wind—grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output.

Low Cost 374