article thumbnail

AIST Developing New Lithium-Air Battery; Lithium Fuel Cell

Green Car Congress

Long-term discharge curve of the newly developed lithium-air cell. Researchers at Japan’s AIST (National Institute of Advanced Industrial Science and Technology) are developing a lithium-air cell with a new structure (a set of three different electrolytes) to avoid degradation and performance problems of conventional lithium-air cells.

article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

IBM Almaden Lab Exploring Lithium-Air Batteries for Next-Generation Energy Storage

Green Car Congress

General schematic of a lithium-air battery. The team plans to explore rechargeable Lithium-Air systems, which could offer 10 times the energy capacity of lithium-ion systems. Original lithium-air batteries—aqueous batteries, or with an aqueous electrolyte/air interface—were primary cells—i.e.,

article thumbnail

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Schematic representation and operating principles of the lithiumwater electrochemical cell used for hydrogen generation: (1) external circuit and (2) inside of lithiumwater electrochemical cell. the high-school chemistry demonstration of the violent reaction between sodium and water.). Source: Wang et al.

Water 186
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Water will be the primary byproduct.

Carbon 249
article thumbnail

Researchers show feasibility of lithium-metal-free anode for Li-air battery; addressing one of three main barriers to Li-air battery development

Green Car Congress

Researchers from University of Rome Sapienza (Italy), Hanyang University (Korea) and the Argonne National Laboratory (US) have shown that the highly reactive lithium metal anode typically projected for use in Li-air batteries can be replaced with a lithiated silicon-carbon anode. carbon composite particles with a lithium foil.

Li-ion 306
article thumbnail

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

Green Car Congress

loss after 130 cycles in lithium-matched full-cell tests against Li 4 Ti 5 O 12 anode), as well as a round-trip overpotential of only 0.24 V. Further, the cathode is automatically protected from O 2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

Cheap 150