article thumbnail

Cornell study examines trade-off between critical metals requirement and transportation decarbonization

Green Car Congress

Decarbonization targets for road transportation should be coupled with electric vehicle deployment, the timing of carbon peak and neutrality, and accurate emission budgets. “Recycling w/o 2nd” indicates retired batteries that are directly recycled without a second life as energy storage systems (ESSs). Zhang et al.

article thumbnail

DOE awards $60M to 24 R&D projects to accelerate advancements in zero-emissions vehicles

Green Car Congress

The US Department of Energy (DOE) is awarding $60 million to 24 research and development projects aimed at reducing carbon dioxide emissions from passenger cars and light- and heavy-duty trucks. (DE-FOA-0002420) Liquid Electrolytes for Lithium-Sulfur Batteries with Enhanced Cycle Life and Energy Density Performance.

Li-ion 186
article thumbnail

DOE awards $54M to 13 projects for transformational manufacturing technologies and materials; top two awards go to carbon fiber materials and electrodes for next-gen batteries

Green Car Congress

The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.

article thumbnail

U Waterloo team shows four-electron conversion for Li-O2 batteries for high energy density; inorganic molten salt electrolyte, high temperature

Green Car Congress

The new work, published in Science , shows that four-electron conversion for lithium-oxygen electrochemistry is highly reversible. The Waterloo team is the first to achieve four-electron conversion, which doubles the electron storage of lithium-oxygen, also known as lithium-air, batteries.

article thumbnail

MIT study adds more detail to understanding of the evolution of Li2O2 particles in Li-air batteries

Green Car Congress

A new study by a team at MIT led by Dr. Yang Shao-Horn and Dr. Carl Thompson sheds more light on the morphological evolution of Li 2 O 2 particles in Lithium-air batteries. Lithium-air (Li?O The nucleation, growth, and morphological evolution of Li 2 O 2 particles have not been thoroughly investigated to date.

MIT 225
article thumbnail

MIT, Toyota team clarifies role of iodide in Li-air batteries

Green Car Congress

Lithium-air (or lithium-oxygen) batteries potentially could offer three times the gravimetric energy of current Li-ion batteries (3500 Wh/kg at the cell level); as such, they are looked to a potential solution for long-range EVs. Li 2 O 2 precipitate passivates the electrode surface hindering further electron transfer.

MIT 199
article thumbnail

3 winners of DOE’s “America’s Next Top Energy Innovator” Challenge: hydrogen-assisted lean-burn engines, graphene for Li-air and -sulfur batteries, and titanium process

Green Car Congress

The introduction of hydrogen into the engine virtually eliminates fuel emissions while greatly reducing the emissions of hydrocarbons and carbon monoxide. In 2007, Vorbeck signed a worldwide license agreement with Princeton University for a patented method from the the Aksay Labs for manufacturing graphene at commercial scale.

Hydrogen 279