Remove Battery Remove Li-ion Remove Lithium Ion Remove Recharge
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

the key to addressing the low-temperature capacity loss lies in adjusting the surface electron configurations of the carbon anode to reinforce the coordinate interaction between the solvated Li + and adsorption sites for Li + desolvation and reduce the activation energy of the charge-transfer process. . … —Lu et al.

Li-ion 418
article thumbnail

Georgia Tech researchers develop aluminum-foil-based anodes for all-solid-state Li-ion batteries

Green Car Congress

Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering, is using an aluminum-foil-based anode in a solid-state Li-ion battery to create batteries with higher energy density and greater stability. The new battery system is detailed in an open-access paper in Nature Communications.

Li-ion 370
article thumbnail

Novel copolymer binder extends the life of lithium-ion batteries

Green Car Congress

One of the major causes for the drop in capacity over time in Li-ion batteries is the degradation of the widely used graphite anodes. interactions between the bis-imino-acenaphthenequinone groups and graphite, and also from the good adherence of the copolymer’s ligands to the copper current collector of the battery.

article thumbnail

Researchers develop room-temp 1,000+ cycle rechargeable solid-state lithium-air battery

Green Car Congress

Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. Ngo, Paul C.

article thumbnail

Tohoku team develops new electrolyte to support rechargeable calcium batteries

Green Car Congress

Scientists from Tohoku University have developed a new fluorine-free calcium (Ca) electrolyte based on a hydrogen (monocarborane) cluster that could potentially realize rechargeable Ca batteries. High-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices.

Recharge 418
article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates.

Li-ion 418
article thumbnail

UCSD team develops new disordered rock salt anode for fast-charging, safer lithium-ion batteries

Green Car Congress

Researchers at UC San Diego, with their colleagues at other institutions, have developed a new anode material that enables lithium-ion batteries to be safely recharged within minutes for thousands of cycles. volts versus a Li/Li + reference electrode. —Liu et al.