Remove Battery Remove Carbon Remove Li-ion Remove Lithium Air
article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

A Li-air cell. Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries have both scientific and engineering challenges that need to be addressed.

Li-ion 281
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

V in lithium-metal batteries (LMBs). In a paper in the journal Nature Energy , the MIT team reports that a lithium-metal battery with the electrolyte delivers a specific capacity of >230?mAh?g V lithium-metal battery can retain >88% capacity for 90 cycles. O 2 cathode with a cut-off voltage up to 4.7?V

Ni-Li 284
article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Researchers in the UK are developing a rechargeable lithium-air battery that could deliver a ten-fold increase in energy capacity compared to that of currently available lithium-ion cells.

article thumbnail

AIST Developing New Lithium-Air Battery; Lithium Fuel Cell

Green Car Congress

Long-term discharge curve of the newly developed lithium-air cell. Researchers at Japan’s AIST (National Institute of Advanced Industrial Science and Technology) are developing a lithium-air cell with a new structure (a set of three different electrolytes) to avoid degradation and performance problems of conventional lithium-air cells.

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

During discharge and charge in UHV, Li ions reversibly intercalate/de-intercalate into/from the Li x V 2 O 5 electrode. During discharge, Li ions meet with reduced oxygen on the surface of the Li x V 2 O 5 electrode forming Li 2 O 2 , which is decomposed upon recharge. The rechargeable Li?air

article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Click to enlarge. Earlier post.). Binod Kumar, leader of UDRI’s electrochemical power group.

article thumbnail

Research team demonstrates Li-air battery capable of long cycle life

Green Car Congress

A team from Hanyang University (Korea) and University of Rome Sapienza (Italy) have demonstrated a lithium–air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g carbon ?1 1 and 3 A g carbon ?1 1 , respectively. Nature Chemistry doi: 10.1038/nchem.1376

Li-ion 326