article thumbnail

FaradionĀ and Phillips 66 to develop lower cost and higher-performing sodium-ion battery materials

Green Car Congress

UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).

Sodium 269
article thumbnail

Iowa State/Ames Lab researcher receives $3M from ARPA-E for solid-state sodium battery

Green Car Congress

The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodium battery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost. Led by Steve W.

Sodium 150
article thumbnail

U Alberta team develops hybrid sodium-ion capacitor; intermediate in energy & power between ultracaps and batteries

Green Car Congress

A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'

Sodium 278
article thumbnail

UT Austin team identifies promising new cathode material for sodium-ion batteries: eldfellite

Green Car Congress

Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.

Sodium 150
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the ā€œholy grailā€ of electrochemical energy storage.

Sodium 150
article thumbnail

Vanderbilt researchers find iron pyrite quantum dots boost performance of sodium-ion and Li-ion batteries

Green Car Congress

Researchers at Vanderbilt University have demonstrated that ultrafine sizes (āˆ¼4.5 nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. A paper on their work is published in the journal ACS Nano.

Li-ion 150
article thumbnail

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

At the Spring 2015 Materials Research Conference in San Francisco earlier this month, PATHION presented two new derivative superionic solid-state electrolytes built upon LiRAP (Lithium-Rich Anti-Perovskite). PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery.

Li-ion 150