Remove 2000 Remove Li-ion Remove Low Cost Remove Universal
article thumbnail

European project to develop cobalt-free EV batteries awarded €11.8M

Green Car Congress

The project will result in a unique battery system that features superior energy density, low cost, increased cycles and reduced critical materials. The proposed Li-ion battery technology will be demonstrated at TRL6 (battery pack) and validated on an automotive EV testbed. Useful cycle life of >2000. >4.5V

Battery 360
article thumbnail

XG Sciences lands SBIR/STTR award to develop Si/graphene anodes for Li-ion batteries for EVs

Green Car Congress

As part of the FY 2012 Phase I Release 3 SBIR/STTR Award program, the US Department of Energy (DOE) has awarded Michigan-based XG Sciences, a manufacturer of graphene nanoplatelets ( earlier post ), a contract to develop low-cost, high-energy Si/graphene anodes for Li-ion batteries for use in extended range electric vehicle applications.

Li-ion 218
article thumbnail

3M and LG Chem enter into NMC patent license agreements; cathode materials for Li-ion batteries

Green Car Congress

3M and LG Chem have entered into a patent license agreement to further expand the use of nickel manganese cobalt oxide (NMC) cathode materials in lithium-ion batteries. 3M’s battery laboratory collaborated with Professor Jeff Dahn and students at Dalhousie University on the NMC technology. Earlier post.) Earlier post.)

Li-ion 150
article thumbnail

BioSolar extends agreement with UCSB for further development of novel polymer cathode; projecting up to 459 Wh/kg and $54/kWh for Li-ion cells

Green Car Congress

The lead inventors of the technology are UCSB professor Dr. The lead inventors of the technology are UCSB professor Dr. Alan Heeger, the recipient of a Nobel Prize in 2000 for the discovery and development of conductive polymers, and Dr. David Vonlanthen, a project scientist and expert in energy storage at UCSB. High energy, low cost.

Polymer 150
article thumbnail

Kyoto team develops new cathode material for high-energy-density rechargeable magnesium batteries

Green Car Congress

Charge–discharge profiles of ion-exchanged MgFeSiO 4. A team of researchers from Kyoto University has demonstrated ion-exchanged MgFeSiO 4 as a feasible cathode material for use in high-energy-density rechargeable magnesium batteries. The ion-exchanged MgFeSiO 4 cathode materials provide a capacity of more than 300 mAh·g ?

Recharge 252
article thumbnail

Japanese start-up seeks to commercialize dual-carbon battery technology; anion intercalation

Green Car Congress

Power Japan Plus says that its battery currently offers energy density comparable to a lithium-ion battery, but with a much more rapid rate of charge and the ability for full discharge over a much longer functional lifetime with improved safety and cradle-to-cradle sustainability. 1994) and Seel and Dahn (2000), along with many others.

Carbon 373
article thumbnail

TU/e introduces converted VW Lupo electric research vehicle; lightweight and longer range

Green Car Congress

Over the past year the Dynamics and Control group of the Eindhoven University of Technology (TU/e) (The Netherlands) has developed a battery electric research vehicle based on a VW Lupo 3L 1.2 The disadvantage is somewhat reduced energy density compared other Li-ion chemistries. Click to enlarge. Click to enlarge.

Convert 337