article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. —Lu et al.

Li-ion 370
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

the key to addressing the low-temperature capacity loss lies in adjusting the surface electron configurations of the carbon anode to reinforce the coordinate interaction between the solvated Li + and adsorption sites for Li + desolvation and reduce the activation energy of the charge-transfer process. . … —Lu et al.

Li-ion 418
article thumbnail

Researchers achieve super-safe, ultrafast Li-ion battery charging

Electrek

In a significant advancement for EV technology, researchers at Chung-Ang University in South Korea have made a breakthrough in lithium-ion (Li-ion) battery charging times and safety.

Li-ion 131
article thumbnail

Direct electro-oxidation method for lithium leaching from spent ternary Li-ion batteries

Green Car Congress

Researchers from Nanchang Hangkong University in China have developed a direct electro-oxidation method for lithium leaching from spent ternary lithium-ion batteries (T-LIBs) (Li 0.8 In a paper in the ACS journal Environmental Science & Technology they report that 95.02% of Li in the spent T-LIBs was leached under 2.5

Li-ion 195
article thumbnail

Argonne researchers identify another reason why fast-charging degrades the performance of Li-ion batteries

Green Car Congress

A new study by researchers from Argonne National Laboratory and the University of Illinois Urbana-Champaign seeking to identify the reasons that cause the performance of fast-charged lithium-ion batteries to degrade in EVs has found interesting chemical behavior of the anode as the battery is charged and discharged.

Li-ion 321
article thumbnail

Researchers convert spent asphalt to mesoporous carbon anode material for Li/Na/K-ion batteries

Green Car Congress

Researchers at Changsha University of Science & Technology in China have used spent asphalt to produce a high-performance universal Li/Na/K-ion anode material. As an anode material for Li-ion batteries, the mesoporous carbon exhibits a reversible capability of 674.2 —Xie et al. 2021.230593.

Li-ion 221
article thumbnail

WPI-led team develops dry-print process to make better, cheaper electrodes for Li-ion batteries

Green Car Congress

A team led by Worcester Polytechnic Institute (WPI) researcher Yan Wang has developed a solvent-free process to manufacture lithium-ion battery electrodes that are greener, cheaper, and charge faster than electrodes currently on the market. —Liu et al. Wang, the WPI William B. The solvents are recovered through distillation.

Li-ion 243