Remove Battery Remove Li-ion Remove Recharge Remove Universal
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

the key to addressing the low-temperature capacity loss lies in adjusting the surface electron configurations of the carbon anode to reinforce the coordinate interaction between the solvated Li + and adsorption sites for Li + desolvation and reduce the activation energy of the charge-transfer process. . … —Lu et al.

Li-ion 418
article thumbnail

Tohoku team develops new electrolyte to support rechargeable calcium batteries

Green Car Congress

Scientists from Tohoku University have developed a new fluorine-free calcium (Ca) electrolyte based on a hydrogen (monocarborane) cluster that could potentially realize rechargeable Ca batteries. High-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices.

Recharge 418
article thumbnail

Japanese researchers unveil rechargeable magnesium batteries that could challenge li-ion dominance

Electric Cars Report

Researchers at Tohoku University have made a groundbreaking advancement in battery technology, developing a novel cathode material for rechargeable magnesium batteries (RMBs) that enables efficient charging and discharging even at low temperatures.

Li-ion 62
article thumbnail

Researchers develop room-temp 1,000+ cycle rechargeable solid-state lithium-air battery

Green Car Congress

Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. Ngo, Paul C.

article thumbnail

Fudan University team develops superfast charging Li-ion battery cathode

Green Car Congress

Researchers at Fudan University with colleagues at the Shanghai Academy of Spaceflight have developed a LiMn 2 O4 material for a Li-ion battery cathode that exhibits superfast charging capabilities. M Li 2 SO 4 aqueous solution. Their paper is published in the ACS journal Nano Letters. —Tang et al.

Li-ion 312
article thumbnail

New electrode material for solid-state batteries improves performance

Green Car Congress

A research team from Japan has recently developed a novel electrode material for all-solid-state batteries (ASSBs) by combining lithium sulfate and lithium ruthenate, which results in improved performance. However, they have never been applied to all-solid-state batteries. Credit: Atsushi Sakuda, Osaka Prefecture University.

Li-ion 536
article thumbnail

Rechargeable ultrahigh-capacity tellurium-aluminum batteries

Green Car Congress

Researchers at the University of Science and Technology Beijing, with colleagues at Beijing Institute of Technology, have demonstrated the potential of rechargeable tellurium (Te) nanowire positive electrodes to construct ultrahigh-capacity rechargeable tellurium-aluminum batteries (TABs). A g -1 as marked. Zhang et al.

Recharge 261