article thumbnail

Researchers propose new VO2 cathode material for aluminum-ion rechargeable battery

Green Car Congress

Sodium-ion and magnesium-ion batteries, as new energy storage systems in portable devices, have attracted much attention of the investigators. However, the concerns regarding the high cost and the limited lithium reserves in the earth’s crust have driven the researchers to search more sustainable alternative energy storage solutions.

Recharge 240
article thumbnail

New high-performance Na-ion battery with SO2-based catholyte; potential for other non-Li-metal-based battery systems

Green Car Congress

Researchers in South Korea have demonstrated new type of room-temperature and high-energy density sodium rechargeable battery using a sulfur dioxide (SO 2 )-based inorganic molten complex catholyte that serves as both a Na + -conducting medium and cathode material (i.e. catholyte). mA cm −2 ). The cutoff voltage for charge is 4.05 V.

Li-ion 150
article thumbnail

Ningbo researchers propose mixed-ion Li/Na batteries

Green Car Congress

Lithium-intercalation compounds and sodium-intercalation compounds are used for anode and cathode, respectively. Sodium-ion based rechargeable batteries (SIBs, e.g., earlier post ) are of interest due to sodium’s abundance, far lower prices, and a greener synthesis while maintaining a similarity in ion-insertion chemistry.

Li-ion 170
article thumbnail

OSU smart membrane could enable new category of high-energy, high-power energy storage for EVs

Green Car Congress

Described in a paper published in the RSC journal Energy & Environmental Science , the smart membrane separator could enable the design of a new category of rechargeable/refillable energy storage devices with high energy density and specific power that would overcome the contemporary limitations of electric vehicles.

article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

Sulfur–TiO2 yolk-shell cathode for Li-sulfur battery shows best long-cycle performance so far

Green Car Congress

To prepare the material, the team reacted sodium thiosulfate with hydrochloric acid to create monodisperse sulfur nanoparticles (NPs); these NPs were then coated with TiO 2 , resulting in the formation of sulfur–TiO 2 core–shell nanoparticles. This is a very important achievement for the future of rechargeable batteries. —Yi Cui.

article thumbnail

Top 5 Promising Technological Developments In The Electric Vehicle Sector

Get Electric Vehicle

In this article, we are going to look into a few of the promising developments in the Electric vehicle industry. #1. Along with sodium-based alternatives, could soon supplant the seemingly obsolete lithium-ion battery. #2. Better Battery. The battery has a pivotal role in making a model successful or not.